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a  b  s  t  r  a  c  t

A  second  nearest-neighbor  modified  embedded  atom  method  (2NN  MEAM)  interatomic  potential  for
lithium–silicon  (Li–Si)  alloys  is  developed  by  using  the  particle  swarm  optimization  (PSO)  method  in
conjunction  with  ab  initio  calculations.  It  is  shown  that  the  new  interatomic  potential  is  capable  of  sim-
ulating  the  transition  from  disordered  to  ordered  states  of  Li–Si  crystalline  structures,  an  indication  of
the stability  and  robustness  of  the  interatomic  potential  at finite  temperature.  Examples  are  given to
eywords:
i-ion battery
i–Si alloy
odified embedded atom method

article swarm optimization

demonstrate  that  the  new  interatomic  potential  is  also  capable  of  predicting  the  material  properties  of
both crystalline  and  amorphous  Li–Si  alloys,  including  the  elastic  modulus,  compositional  expansion,
diffusivity  of  Li  in  Li–Si  alloys,  plastic  yield  strength,  etc.

© 2012 Elsevier B.V. All rights reserved.
isordered–ordered transition

. Introduction

Lithium (Li) ion batteries have gained tremendous attentions
ecently in high energy capacity, high operating voltage and low
elf-discharge energy storage devices [1].  For higher capacity Li-
on batteries, silicon (Si) is being considered as a promising anode

aterial owing to its highest known theoretical charge capacity
4200 mAh  g−1) [2,3]. However, the volume expansion of the Si
node can be as much as 400% after fully charged, which often
eads fracture failure resulting in reduced battery life [4–6]. Such

echanical failure has been one of the major roadblocks that
revent the technology breakthroughs for large scale commercial-

zation of Si-based anode Li-ion batteries.
Extensive numerical simulations [7–9] and microscopic ana-

yzes [4,6,10–19] have confirmed that the insertion of Li ions into
i forms Li–Si alloys. Depending on the amount of Li, LixSi alloys of
arious compositions might be formed [10,11].  Volumetric expan-
ion due to Li insertion has also been studied extensively both
umerically [7,20] and experimentally [8,21–23]. Based on known
ompositions and their volume change with respect to Si lattice,
any researchers [24–32] have computed the stresses generated
uring Li insertion.
Although many attempts have been made and several models

ave been developed for understanding the precise mechanisms of

∗ Corresponding author. Tel.: +1 847 467 4528.
E-mail address: j-qu@northwestern.edu (J. Qu).

378-7753/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2012.01.145
Li insertion/extraction, these models are still far from being quanti-
tative and are not ready for design applications. For instance, some
existing models predict the stress generated by Li insertion, but do
not account for the effect of stress on the diffusion of Li. Without
such two-way coupling, these exiting models are unable to simu-
late correctly the insertion of Li in the Si, thus cannot calculate the
Li concentration accurately. Without such information, one cannot
calculate the stresses correctly, nor can one predict the fracture of
the Si anode. This is because Li concentration is non-uniform, and
highly dependent on the diffusion of Li within the Si anode, which is
strongly influenced by stress distribution [21,33].  Although some
recent studies have attempted to investigate the effect of stress
on Li diffusion [32–36],  models used in these studies either did
not account for the electrochemical driving forces for Li transport
[37,38], or ignored the effect of shear stresses, or was  based on small
strain deformation.

More importantly, recent TEM in situ observations [39–41] show
that during the first charge of a Si nanoparticle or nanowire, a sharp
crystal/amorphous interface is formed that moves towards the cen-
ter as the charge progresses. At some point, fracture occurs on the
particle surface due to tensile hoop stress. However, none of the
existing theories seems to be able to predict such failure process.

A key drawback of all the existing models is the lack of input
from material composition and microstructure. In fact, all the avail-

able models are based on continuum mechanics. Yet, Li insertion
is inherently atomistic, because the insertion of Li atoms into Si
causes significant changes in the Si bond structure [42]. What
this means is that care must be taken in developing continuum

dx.doi.org/10.1016/j.jpowsour.2012.01.145
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:j-qu@northwestern.edu
dx.doi.org/10.1016/j.jpowsour.2012.01.145
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odels in order to account for such microstructural changes during
nsertion. Otherwise, continuum models would be unable to simu-
ate certain physical phenomena such as phase transformation and
racture as observed in Li insertion.

Another major shortcoming of the existing continuum models
s the lack of appropriate values for many of the physical proper-
ies in the model, such as the plastic yield strength of LixSi as a
unction of Li concentration, and the diffusivity of Li in LixSi and its
ependence on the stress. In theory, these properties can be mea-
ured experimentally. In reality, such measurements are extremely
umbersome, and difficult to perform.

With recent advances in computational algorithms and com-
uter hardware, atomistic level computations, such as molecular
ynamic (MD) simulations have become an effective and efficient
ool for simulating material behavior and for computing material
roperties. If done correctly, MD  simulations can provide insightful

nformation on the microstructural changes during deformation,
nd enhance our understanding of the failure mechanisms. We
elieve that many of the existing continuum models on Li inser-
ion will benefit greatly from comparing with atomistic level
imulations.

However, to conduct MD  simulations, the first thing needed is
 proper interatomic potential. At the present time, interatomic
otentials for Li–Si alloys are not available. This is the major reason
hat no MD  simulation results have been published in the open
iterature so far. In fact, Haftbaradaran et al. [34] had developed

 continuum model for Li diffusion in LixSi alloys. To verify their
ontinuum model, they have conducted MD  simulations. However,
ecause of the lack of interatomic potential for Li–Si alloys, their
D simulations were performed on the diffusion of hydrogen in

ingle crystal fcc nickel.
Clearly, there is a critical need for developing an accurate and

obust interatomic potential for conducting MD  simulations of Li
nsertion into Si anode. The potential should be able to describe all
he possible atomic interactions in all the possible crystal struc-
ures of LixSi, as well as the amorphous LixSi of any 0 < x < 4.4.
t should also provide stable solution at both room and elevated
emperatures. Furthermore, the potential must be able to calcu-
ate accurately the basic properties of LixSi including the elastic
onstants, the lattice constants, the cohesive energies, etc.

Such an interatomic potential for LixSi will be a powerful tool. It
nables us to validate the various continuum models on Li insertion.
t can be used to estimate some of the material properties that are
ifficult to obtain experimentally. It gives us a mean to study the
icrostructural mechanisms of fracture and failure.
One of the most widely used interatomic potentials for metals is

he modified embedded atom method (MEAM) potential first pro-
osed by Baskes [43]. It has been used for a variety of fcc metals with
reat success. However, as pointed out recently by Lee et al. [44],
he MEAM potential has some drawbacks when used for bcc crystal
tructures. For instance, the (1 1 1) surface energy was found to be
maller than that of (1 0 0) surface by the MEAM potential, which is
ontrary to experimental results or ab initio calculations. Also, the
EAM potential predicts that the most stable structure for Li is not

cc, which is obviously incorrect.
To better describe the bcc structure, Lee et al. [44] proposed the

econd nearest neighbor (2NN) MEAM interatomic potential, and
emonstrated that it is better suited for the bcc structure. Since
hen, 2NN MEAM potentials have been developed for several ele-

ents and their alloys including silicon [45] and magnesium [46].
This paper describes the development of a 2NN MEAM poten-

ial for the LixSi alloys. Our general approach is to use data from

xisting experimental measurements and ab initio computations.
ased on these data, the parameters in the 2NN MEAM potential
ill be optimized by the particle swarm optimization (PSO) [47–49]

echnique.
rces 207 (2012) 150– 159 151

Before proceeding, however, we  note that LixSi alloys are some-
what different from typical metal alloys in that they exhibit some
behavior of ionic solids. For example, a number of investigators
[50,51] have used first principles calculations to study the charge
transfer in LixSi crystal structures. Their results reveal that Li atoms
donate a certain amount of electrons to the Si atoms in all crystalline
Li–Si phases. However, the charge carried by the Si atoms seems to
differ depending on the Li concentration, and the crystalline struc-
ture. Furthermore, in a given Li–Si crystalline structure, the charge
distribution among Si atoms may  not be the same. This poses a fun-
damental question as to whether an interatomic potential exists
that is universal to all the different compositions and structures of
LixSi. Although the answer to this question is not clear at this point,
our preliminary MD results, as discussed in this paper, do show
good agreement with the experimental data or with the ab initio
computations, indicating that charge transfer effect in LixSi may  be
neglected, and an accurate and robust interatomic potential might
exist that can accurately predict the behavior of LixSi alloys under
a wide range of conditions.

2. Methodology

2.1. 2NN MEAM potential

In a 2NN MEAM formulation, the total energy of a system is
written as [45,52]

E =
∑

i

⎡
⎣Fi( �̄i) + 1

2

∑
j( /=  i)

ϕij(Rij)

⎤
⎦ , (1)

where Fi( �̄i) is the embedding function, �̄i is the background elec-
tron density at the site where atom i occupies, and ϕij(Rij) is the pair
interaction between atoms i and j at a distance Rij. The background
electron density �̄ is composed of several partial electron density
terms. Each partial electron density is a function of atomic config-
uration and atomic electron density. The atomic electron density is
given by

�a(h)
j

(Rij) = �0 exp

[
−ˇ(h)

(
Rij

re
− 1

)]
, (2)

where �0 is a scaling factor, ˇ(h) are adjustable parameters and re is
the nearest neighbor distance in the reference structure after equi-
librium. In the 2NN MEAM,  the energy per atom in the reference
structure is estimated from a universal equation of state [53]. Once
Fi( �̄i) is known, the pair potential ϕij(Rij) can be evaluated. More
details of the MEAM formulation can be found in [45,52].

For a binary intermetallic compound, the only unknown func-
tion in the potential is the pair potential function between the
different types of atoms. To obtain the pair potential function,
the atoms that have the same type of atoms as second nearest-
neighbors are considered as a reference structure. For the LixSi
alloy considered here, we  used a Li3Si-type L12 ordered structure
as the reference structure. Thus, the total energy per atom (for 3/4
Li atom + 1/4 Si atom) is given by,

Eu
Li3Si(R) = 1

4
FSi( �̄Si) + 3

4
FLi( �̄Li) + Z1

2

[
1
2

ϕSiLi(R) + 1
2

ϕLiLi(R)
]

+ Z2

2

[
1
4

SSiϕSiSi(aR) + 3
4

SLiϕLiLi(aR)
]

, (3)

where Z1 and Z2 are the numbers of first and second NN, respec-

tively, in the L12 Li3Si structure, SLi and SSi are the screening
function for the 2NN interactions between Li, and Si atoms, respec-
tively, and a is the ratio between the second and first NN distances
in the reference structure. The pair potential function between Li
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Table 1
Optimized parameters in the 2NN MEAM potential for Li–Si alloys.

Parameters

Ec (eV atom−1) 2.45
re (Å) 2.75
˛ 4.10
d 0.10
�0 (�Si

0 /�Li
0 ) 3.0

Cmax (Li–Li–Si) 2.81
Cmax (Si–Si–Li) 2.20
Cmax (Li–Si–Li) 2.40
Cmax (Li–Si–Si) 2.40
Cmin (Li–Li–Si) 0.55
C (Si–Si–Li) 0.35
52 Z. Cui et al. / Journal of Pow

nd Si can then be evaluated by

LiSi(R) = 1
3

Eu
Li3Si(R) − 1

12
FSi( �̄Si) − 1

4
FLi( �̄Li) − ϕLiLi(R)

− 1
4

SSiϕSiSi(aR) − 3
4

SLiϕLiLi(aR). (4)

he only unknown term on the right hand side of (4) is the total
nergy per atom, Eu

Li3Si. To obtain Eu
Li3Si, the universal equation of

tate can be used. For the L12 structure of Li3Si,

u
Li3Si(R) = −Ec[1 + a∗ + d(a∗)3]e−a∗

, (5)

here

∗ = ˛

(
Rij

re
− 1

)
,  ̨ =

√
9B˝

Ec
(6)

n the above, re is the equilibrium NN distance, d is an adjustable
arameter, B is the bulk modulus, and  ̋ is the equilibrium
tomic volume. Once these parameters are determined for the L12
tructure, the corresponding pair potential function ϕLiSi can be
valuated from (4).

In addition to these 4 parameters in the universal equation of
tate, there are 9 other parameters in the potential that need to be
etermined. One is the atomic electron density scaling factor �0. It
as been found that �0 has little impact on pure element, but plays

 significant role in alloys [44,45]. Furthermore, Cmax and Cmin are
lso crucial in determining the interaction range of the alloys. For
i–Si binary alloy system, there are 4 combinations of both Cmax and
min, i.e. (Li–Si–Li, Li–Li–Si, Si–Si–Li, Si–Li–Si) for a total of 8 param-
ters. Altogether, there are 13 parameters that can be adjusted in
rder to fit the 2NN MEAM potential for a binary alloy. They are Ec,
e, ˛, d, �0, and 4 combinations of both Cmax and Cmin. For a given
et of these 13 parameters, a number of physical properties of the
ve known crystalline structures of LixSi alloys (x = 1, 12/7, 13/4,
5/4, 22/5), such as the lattice constants, cohesive energies, elastic
onstants, etc., can be predicted by MD  simulations. By fitting these
D predictions to their corresponding values from either exper-

mental measurements or ab initio simulations, the 13 adjustable
arameters in the 2NN MEAM potential can be optimized to yield
n accurate and hopefully robust interatomic potential for the Li–Si
lloys. In the next section, we will describe how such optimization
an be accomplished by the PSO method.

To obtain the complete 2NN MEAM potential for the LixSi alloys,
he corresponding potentials for Li and Si are also needed. The 2NN

EAM potential for pure Si has been obtained by Lee [45]. We  have
odified Lee’s potential slightly so it is better suited for develop-

ng the 2NN MEAM potential for the Li–Si system, see Appendix A.
he 2NN MEAM potential for Li was also developed earlier by the
resent authors [52].

.2. Optimization procedures

In this section, we describe how the particle swarm optimization
PSO) method [47–49] can be used to determine simultaneously
he 13 adjustable parameters in the 2NN MEAM potential. The PSO

ethod is a novel population-based optimization technique. It was
eveloped initially to simulate animal social behaviors, e.g., birds
ocking, fish schooling and insects herding. Due to its simple algo-
ithm and fast convergence, the PSO has been widely adopted in
any areas such as power system [54], structural damage identi-

cation [55], nonlinear system identification [56], ice-storage air
onditioning system [57], etc.
The PSO method starts with a group (called swarm) of candidate
olutions (called particles). These particles move around within the
earch space to seek food (called optimum). Let ˘(j) be an objective
unction that transforms a particle to a unique real number. The goal
min

Cmin (Li–Si–Li) 0.45
Cmin (Li–Si–Si) 0.45

is to find a particular particle j such that ˘(j) ≤ ˘(k) for all particle
k within the search space.

Let x = (x1, x1, . . .,  xM) represent a set of candidate parameters in
the 2NN MEAM for a specific material. Thus the objective function
for the optimization can be defined as,

˘(x) =
N∑

i=1

�i

[
fi(x)

yi
− 1

]2

, (7)

where fi(x) is a physical property calculated by MD  simulations
using the 2NN MEAM potential with the parameter set x. Such
physical properties can be, for example, lattice constants or elastic
constants. The yi is the corresponding value of the same physical
property from ab initio calculations, or experimental measure-
ments. The weighting factor �i is a positive number selected based
on the importance of this particular physical property. In this study,
structural properties are considered much more important than
auxiliary structures, so they are given much larger weights. The
objective here is to find a particular x0 so that ˘(x0) ≤ ˘(x) for all
x in the search space.

To start the optimization, each parameter is assigned a random
value as the initial input. Physical properties of the systems are
then computed based on the 2NN MEAM potential with this initial
set of parameters. This gives the first iteration of fi(x) in Eq. (7).
The next set of candidate parameters is then selected using the
PSO algorithm. A small enough “time step” is used in the PSO to
ensure that each partial electron density term has the same order of
magnitude. The above procedures are repeated until the objective
function ˘(x) has been minimized to a satisfactory level. All the
MD  simulations in this study are conducted by using the LAMMPS
software code [58,59].

As seen from Eq. (7), a database of physical properties yi is
needed in order to optimize the parameters in the 2NN MEAM
potential. In this work, the physical properties used include the
lattice constants, cohesive energies and elastic constants for 5
LixSi alloy structures (x = 1, 12/7, 13/4, 15/4, 22/5, corresponding
to Li1Si1, Li12Si7, Li13Si4, Li15Si4, and L22Si5, respectively), as well
as the binding energies of five auxiliary structures, namely, four
crystals (B1, B2, B3, L12) and one molecular structures (LiSi). These
properties are either calculated by ab initio simulations carried in
this work or obtained from the open literature.

The ab initio calculations are performed using the CASTEP
software [60]. The ultrasoft pseudopotentials are used in conjunc-
tion with the Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximations (GGA) exchange correlation function. The cutoff of
plane-wave basis set is 500 eV atom−1. The energy tolerance for the

self-consistent field convergence is 5.0 × 10−7 eV atom−1 for all the
calculations.

The optimized parameters obtained from the procedures
described above are listed in Table 1. Making use of these
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Table 2
Physical properties of 5 LixSi crystal structures using the new 2NN MEAM potentials. The units of the cohesive energy (Ec), equilibrium lattice constants (A, B and C) and elastic
constants (C11–C66) are in eV, Å and GPa, respectively. The first row of each alloy system is from our MD  simulations, and the second row is from our ab initio calculations.

Ec A B C C11 C22 C33 C12 C13 C23 C44 C55 C66

Li1Si1
3.333 9.346 9.346 5.673 112 112 94 58 72 72 42 42 26
3.301  9.356 9.356 5.742 101 101 77 19 37 37 45 45 37

Li15Si4
2.361 10.589 10.589 10.589 48 48 48 33 33 33 23 23 23
2.466  10.616 10.616 10.616 47 47 47 21 21 21 28 28 28

Li22Si5
2.270 18.776 18.776 18.776 52 52 52 28 28 28 30 30 30
2.353  18.680 18.680 18.680 46 46 46 23 23 23 35 35 35

Li12Si7
2.855 8.139 20.358 14.343 87 78 85 45 42 39 17 20 15
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2.950  8.553 19.647 14.317 92

Li13Si4
2.412 7.993 15.103 4.427 75 

2.556  7.932 15.105 4.437 74 

arameters in Eq. (1),  one obtains the 2NN MEAM interatomic
otential for Li–Si alloys.

.3. Validity and accuracy of the new 2NN MEAM potential for
ixSi

To assess the accuracy of the new potential, we have calculated
everal physical properties of LixSi alloys. Shown in Table 2 are the
roperties of crystalline LixSi alloys calculated by ab initio simula-
ions, as well as the MD  results by using the 2NN MEAM potential
or Li–Si. It is seen that, using the 2NN MEAM potential in con-
unction with the parameters listed in Table 1, the MD  simulations
redict these physical properties very well.

Another comparison is shown in Fig. 1, where the MD results
ased on the new 2NN MEAM potential are shown together with
he ab initio results for the binding energies of 5 auxiliary structures.
verall, the average difference is estimated to be less than 10%,
xpect for the “Dimer” structure which gives a relatively higher
alue, ∼60%.

Another important validation of interatomic potentials for crys-
alline materials is their ability to simulate the transition from a dis-
rdered structure to an ordered structure[52]. To this end, MD sim-
lations are conducted using the new 2NN MEAM potential to simu-

ate the transition of several Li–Si alloys from disordered structures
o crystalline structures. The disordered structures are obtained by
reating an offset (ca. 0.75 Å) from the original sites of the atoms.

ig. 2a shows a typical disordered structure of Li22Si5. Next to it, the
orresponding radial distribution function (RDF) is plotted, which
learly indicates a disordered structure. From this initially disor-
ered structure, MD  simulations are conducted to equilibrate the

ig. 1. Comparison between our MD simulations (data points) and ab initio calcula-
ions (solid curve). Energies of several crystals and molecular structures are plotted
ersus the Li–Si nearest-neighbor distance.
97 90 5 11 8 28 26 24
70 74 22 24 28 20 14 14
61 77 17 11 10 23 24 28

system. During the equilibration, the structure gradually becomes
more and more ordered and eventually returns back to its origi-
nal crystalline structure with cohesive energy and lattice constants
identical to the original ordered structure. Fig. 2b–d shows several
snapshots of the structure and the corresponding RDF during the
equilibration. Such transition can be considered as a specific tran-
sition path from the molten state to a solid state, which in turn
proves that the newly developed 2NN MEAM potential is robust.

3. Properties of amorphous LixSi alloys

In this section, properties of LixSi alloys will be computed using
MD  simulations based on the 2NN MEAM interatomic potential
developed in the previous section. The first step in MD  simulation
is to construct a simulation cell with atomistic structure identical
to that of the material being simulated. This is usually easy for crys-
talline materials. However, it is not so trivial for amorphous mate-
rials. In this work, we create the amorphous structure via a rapid
quench process – increasing the temperature of an initially crys-
talline structure of a given composition to 4000 K; then decreasing
the temperature rapidly to room temperature. Such rapid quench-
ing creates an amorphous structure with desired composition. The
amorphous nature of the resulted simulation cells is demonstrated
by the RDF shown in Fig. 3 for all LixSi alloys studied in this work. It is
clearly seen that the simulations cells created by the rapid quench-
ing are indeed amorphous. In all these alloys, the first neighbor
distance varies from 2.75 to 2.90 Å for Li–Li with the increment of
Li concentration, while it remains constant (i.e., 2.67 Å) for Li–Si.
One interesting observation is that the Si atoms seem to be much
less disordered than the Li atoms, which indicates some Si atoms
are still covalently bonded whereas with slightly larger bond dis-
tance varying from 2.35 to 2.54 Å after lithiation. Overall, our results
are in good agreement with the recent ab initio studies [51,61].

Once the simulation cell is constructed, MD  simulations can be
performed. Unless stated otherwise, MD  simulations in this paper
are conducted on the NPT ensemble at finite temperature by using
the Nose-Hoover thermostat and Parrinello-Rahman pressostat.
The cutoff distance is set up as 4.8 Å. Time step is set as 1fs. Each sim-
ulation starts with 1000 ps equilibrium, followed by an additional
2000 ps for data collection.

3.1. Coefficient of compositional expansion (CCE) of amorphous
LixSi alloys

The coefficient of compositional expansion (CCE) due to Li inser-
tion can be calculated by the linear strain per lithium concentration
[62,63],
� = ∂εL

∂x

∣∣∣∣
x=x0

, (8)
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ondin
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Fig. 2. Several typical snapshots of intermediate structures and corresp

here εL is the linear compositional expansion and x is the

ithium concentration. The strain of an amorphous structure aris-
ng from the solute concentration change is purely volumetric and
sotropic. Thus the linear strain of amorphous LixSi alloy can be

ritten as
g RDFs during the transition from disordered (a) to ordered states (d).

V(x) − V(0)

εL =

3V(0)
, (9)

where V0 is the volume of crystalline silicon. In this paper, the
volume change V(x) is computed by conducting MD  simulations
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ig. 3. Radial distribution functions of LixSi amorphous alloys created by quenching.

sing the 2NN MEAM potential developed in the previous section.
hown in Fig. 4 is the computed volume expansion versus lithium
oncentration in LixSi. The results agree well with the ab initio calcu-

ations and experimental measurements. For example, for x = 3.75,
ur result is 3.9, while the ab initio value is 4.1 [42], and the experi-
ental data ranges from 3.6 to 5.4 [41]. Making use of these results

n Eq. (8) yields � = 0.2555.
Fig. 4. Volume change versus lithium concentration. Experimental results are eval-
uated from [41].

3.2. Elastic modulus of amorphous LixSi alloys

Elastic constants of amorphous LixSi alloys are calculated from
MD simulations by using the stress and strain fluctuation formula
[64]. The results show that the calculated elastic stiffness ten-
sor is isotropic, as expected from the amorphous structure. Four
elastic constants (only two of them are independent) are shown
in Fig. 5. For pure amorphous Si (x = 0) at room temperature, the
elastic modulus of our MD result is 116 GPa, slightly larger than
the experimental measurement (90–110 GPa) [65], while the shear
modulus (46 GPa) is within the range of available experimental
values (45–56 GPa) [65]. For the amorphous alloys, neither exper-
imental nor simulated room temperature data are available in the
literature. For comparison, we  also calculate the modulus at 0K,
which is plotted in Fig. 5 (solid black squares) against the cor-
responding ab initio results (open diamonds) from [20]. It seems
that our MD simulations predict stiffer bulk and Young’s moduli
than the ab initio calculations from [20], especially for pure amor-
phous Si. We  do note here, however, that our 0K modulus for pure
amorphous Si agrees well with other ab initio studies, e.g. [66] and
empirical calculations [67].

To use the concentration dependent modulus in a continuum
thermodynamic model, the following expressions for the Young’s
modulus E(x) and the Poisson’s ratio �(x) may  be used,

E(x) = E(0)(1 + �E1x + �E2x2), �(0) = �(0)(1 + ��1x + ��2x2),

(10)

where E(0) = 102.6 GPa is the Young’s modulus of pure amor-
phous Si, �E1 = − 0.41, �E2 = 0.047, �(0) = 0.30 is the Poisson’s ratio of
pure amorphous Si, ��1 = 0.16, and ��2 = − 0.018. These values are
obtained by fitting the quadratic equations to our MD  data shown
in Fig. 5.

3.3. Composition-dependent diffusivity of Li in LixSi alloys

The diffusivity of Li in the LixSi alloys depends on the com-
position of the alloys [68]. To investigate such dependence, MD
simulations are conducted to calculate the mean square displace-
ment (MSD). MSD  has been extensively used to describe the
movement of atoms in solids, liquids and gases. Obviously, the MSD

also contains information on the diffusion of atoms. It has been
shown that the MSD  increases linearly with time when diffusion
occurs [69], and the slop of the MSD  versus time curve gives the
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nitude smaller in crystalline LixSi than that in the corresponding
amorphous alloy, with the exception of Li in Li12Si7, where the
difference is much smaller. This is supports the hypothesis used
ig. 5. Elastic constants of five LixSi amorphous structures obtained from the new
xperimental results are from [65].

iffusion constant D,

 = 1
6

lim
	t→∞

MSD(t + 	t)  − MSD(t)
	t

= 1
6

lim
t→∞

〈∣∣ri(t + 	t) − ri(t)
∣∣2

〉
	t

, (11)

here ri(t) is the position vector of the diffusing atom i at the time
, and the symbol 〈〉 denotes the average over all the diffusing atoms
n the simulation cell. Theoretically, the MSD(t) is a linear function
f t so that the D calculated from Eq. (11) is independent of t. In
eality, there are always fluctuations in the MSD(t) when calculated
y MD  simulations. Thus, linear regression, instead of numerical
erivative, is used to calculate the diffusivity D from the MSD(t)
urve.

Another challenge is computing MSD  at room temperature.
ecause the diffusion of Li at room temperature is rather slow, it

s extremely time consuming to conduct MD  in order to calculate
SD, particularly at lower Li concentrations. Therefore, we com-

ute the MSD  at elevated temperature in this work. An example
s shown in Fig. 6 where the MSD  of Li atoms in Li1Si1 is plot-
ed as a function of t at several elevated temperatures. From these
igh temperature data, diffusivity at temperatures can be obtained

rom (11). Once the diffusivity is known at several higher tempera-
ures, its room temperature value can be extrapolated through the
ollowing Arrhenius equation,( )

(T) = D0 exp

−Ea

RT
, (12)

here T is the absolute temperature, R is the universal gas constant,
nd D0 and Ea are constants independent of temperature. In fact,
 MEAM potentials at 0 K and 300 K. Dotted lines are used for visual convenience.

the high temperature data show a linear relationship between ln(D)
and (1/T), as shown by the solid dots in Fig. 7.

Using the method described above, we  have calculated the room
temperature (300 K) diffusivity of Li and Si in both crystalline and
amorphous LixSi for several values of x. The results are shown in
Fig. 8a for Li and Fig. 8b for Si. Several observations can be made.
First, the diffusion of Li in LixSi alloy is at least an order of magnitude
faster than that of Si, indicating that Li is the dominant diffusing
species. Second, the diffusivity of Li either or Si is orders of mag-
Fig. 6. MSD  of Li atoms in a Li1Si1 simulation cell under different temperatures.
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ig. 7. Diffusivity is related to temperature through the Arrhenius equation. The
olids dots are calculated directly from the high temperature MSD data.

n Ref. [70] that the large difference in diffusivity between the
morphous and the crystalline structures is a major cause of the
bserved radial cracking of Si particles and wires [39]. Third, in
he amorphous LixSi alloys, diffusivity of Li increases dramatically
nd monotonically as the Li concentration increases; in the crys-
alline LixSi alloys, however, the diffusivity of Li first increases with

ncreasing Li concentration, then starts to decrease as Li concentra-
ion increases further. The highest diffusivity of Li seems to occur
n Li13Si4. Finally, we note that similar trend can also be observed

ig. 8. Diffusivity of (a) Li and (b) Si atoms in both amorphous and crystalline LixSi
lloys at 300 K.
Fig. 9. Uniaxial stress–strain curves of amorphous LixSi alloys at 300 K under the
strain rate of 108.

for the diffusivity of Si, although the highest diffusivity of Si occurs
in Li12Si7.

It is noted that the Li diffusivity in amorphous Li1Si1 shown in
Fig. 8 is smaller than the recent ab initio calculation [61] in which
the mixing process is studied. In addition, our Li diffusivity is much
higher than the experimental data [68], and shows a monotonic
increase with increasing x, while the experimental data seem to
exhibit a “W”  shape with two minimum regions at Li2.1±0.2Si and
Li3.2±0.2Si. These differences might be attributed to the possible
coexistence of amorphous and crystalline microstructures in the
partially lithiated experimental samples. Further studies are being
conducted to reconcile the differences.

3.4. Uniaxial stress–strain relationship at 300 K

To understand the mechanical behavior, MD  simulations at
300 K are conducted to obtain the room temperature uniaxial
stress–strain relationship for amorphous LixSi alloys. The simula-
tions using the NPT ensemble are carried out on an amorphous
LixSi supercell by applying a constant strain rate uniaxially. Periodic
boundary conditions (PBC) are prescribed in all three directions of

the simulation cell. Traction on the surfaces normal to the loading
direction is set to zero to ensure that the deformation is uniaxial.
To explore the strain rate effect, three rates, 107, 108, and 109, are
used.

Fig. 10. Yield strength as a function of Li concentration in amorphous LixSi alloys
under different strain rates.
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Table A1
Optimized parameters in the 2NN MEAM potential for Li [52] and Si. The units of the cohesive energy Ec and equilibrium nearest neighbor distance re are in eV and Å,
respectively.

Ec re  ̨ d A ˇ(0) ˇ(1) ˇ(2) ˇ(3) t(1) t(2) t(3) Cmax Cmin

4.88 4.15 5.27 −1.46 4.13 −0.57 1.91 0.31
7.50 0.00 3.00 1.45 7.61 −2.10 2.60 0.75
2.50 0.00 7.50 1.80 5.25 −2.61 2.80 1.41
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Li[52] 1.65 2.99 3.00 0.14 0.64 1.03 

Si  4.63 2.35 4.90 0.03 0.53 3.00 

Si[45] 4.63 2.35 4.92 0.00 0.58 3.55 

Shown in Fig. 9 are the simulated room temperature (300 K)
tress–strain curves under the strain rate of 108 for various compo-
itions of amorphous LixSi. It is seen that the stress–strain curves
xhibit the typical characteristics of metallic materials – an ini-
ial linear portion, then nonlinear portion. The Young’s modulus
an be obtained from the slop of the linear portion of the uniaxial
tress–strain curve. The Young’s modulus so obtained agrees well
ith that given in Fig. 5, which is obtained by using the stress and

train fluctuation formula [64] via MD  simulation.
The yield strength can then be extracted from the uniaxial

tress–strain curves in Fig. 9. This is done by first plotting the
inear regression of the linear portion of the stress–strain curve;
hen plotting a parallel line with 0.2% strain offset. The intersection
etween this 0.2% offset line and the stress–strain curve gives the
ield strength. The yield strength so obtain is shown in Fig. 10 as a
unction of Li concentration under three different strain rates.

Clearly, the yield strength is rate dependent. However, the data
eem to show that, even with 2 orders of magnitude difference in
train rate, the yield strength does not change significantly, albeit
his observation is made based on data at extremely high strain
ates. To obtain accurate quasi-static yield strength, more studies
re needed.

. Summary and concluding remarks

A 2NN MEAM interatomic potential for the Li–Si system is devel-
ped in this paper by fitting the 13 adjustable parameters in the
otential function to a number of physical properties of the Li–Si
lloys. These properties are obtained by using the first principles
alculations, and the fitting is done by using the particle swarm
ptimization method.

Validity and accuracy of the new 2NN MEAM potential is
emonstrated by computing primary structural properties for both
rystalline and amorphous LixSi alloys, as well as simulating the
ransition from disordered to ordered states of the atomistic struc-
ure.

The validated 2NN MEAM potential is then used to calculate sev-
ral thermomechanical properties of the Li–Si systems including
he elastic modulus, diffusivity of Li in LixSi alloys, and the plas-
ic yield strength. The results show that these properties are all
oncentration dependent, i.e.,  they are function of x in LixSi.

This new interatomic potential will be powerful tool for the
odeling and simulation of fracture failure of Si-based anode in

i-ion batteries. It enables us to validate the various continuum
odels on Li insertion; it can be used to estimate some of the mate-

ial properties that are difficult to obtain experimentally; and it
ives us a mean to study the microstructural mechanisms of frac-
ure and failure.

cknowledgements

This work is supported by ISEN Booster Award at Northwestern
niversity.
ppendix A. 2NN MEAM potential for Si

Using the same method described in Ref. [52], we  have devel-
ped a 2NN MEAM potential for pure Si. The parameters in this

[

[
[

Fig. A1. Comparison between the MD  results (data points) and ab initio calculation
(solid curve). Energies of several crystals and molecular structures are plotted versus
the Si–Si nearest-neighbor distance.

2NN MEAM potential are somewhat different from those given in
Ref. [45], see Table A1.  The elastic constants and vacancy energies
calculated by our 2NN MEAM potential are consistent with the val-
ues given by Baskes [43], Lee [45] and Timonova [71]. However,
our MEAM potential provides a better description of the relation
between energy and Si–Si nearest neighbor distance for more refer-
ence structures, as illustrated in Fig. A1,  where the total energies of
the auxiliary structures are plotted versus nearest neighbor distance
varying from 2.0 to 3.5 Å.
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